Crawford thrust (see back cover)

Coeditors
DONALD W. BOYD
JASON A. LILLEGRAVEN
THE UNIVERSITY OF WYOMING
LARAMIE, WYOMING 82071-3006
U.S.A.
INFORMATION FOR CONTRIBUTORS

CONTRIBUTIONS TO GEOLOGY, The University of Wyoming, Laramie, Wyoming, and indicates articles in English dealing with geology and paleontology. Articles of general interest or those dealing with problems especially pertinent to the Rocky Mountain region are given highest priority for publication. Manuscripts submitted should contain results of original research.

Authors are encouraged to contribute $5.00 per printed page, but payment is voluntary.

Lengthy manuscripts may be submitted for consideration as "Special Papers." Publishing costs for a "Special Paper" are generally borne by the author.

Manuscript preparation. It is strongly recommended that, before submitting a paper, the author ask qualified persons to read it critically so that subsequent review will be facilitated. The author is requested to submit the original and at least one additional copy (a good photo copy is acceptable) on 8 1/2 x 11 opaque, nonerasable standard weight paper, double-spacing the entire manuscript including all legends, references cited, appendices, and other miscellaneous items. Use ample margins. Do not break words at right-hand margins anywhere in the manuscript. A title page, footnotes, and more than three levels of subheadings in the text are to be avoided. Style in the basic text, references cited, and captions should follow all respects that used in current issues of Contributions to Geology. In sections dealing with systematic paleontology, use the leading arrangement characteristic of those sections in current issues of Contributions to Geology. Manuscripts that do not conform to the requested style will be returned to the author without review. The metric system of weights and measurements must be used. Abbreviations must be defined as or before the first time they are used. An abstract summarizing in concise terms the entire manuscript should be included. Articles and discussions in the paper must accompany all manuscripts; all new taxonomic names should be listed therein. A translation of the abstract in French, German, or Spanish is acceptable where appropriate.

Authors are advised to adhere to the taxonomic procedures as outlined in the International Code of Zoological Nomenclature (Ieellis, and others, 1964) and the International Code of Botanical Nomenclature (Lawoupy, and others, 1956). Special attention should be given to the description of new taxa, determination of holotypes, synonymsies, etc.

Tables and figures (ne drawings, graphs, or photographs) should not repeat data contained in the text. The author must provide numbers and brief captions for tables and figures, and refer to each of them in the text. Figure captions should be typed on a separate sheet and included with the manuscript. Special attention should be given to designation of orientations of views, scale used, and clarity of numbering discrete subjects within a figure. Include a linear scale using metric units on the figure itself; do not include magnifications in figure captions. Illustrations should be referred to as "figures" except for unusual materials requiring insertions of special paper, which may be referred to as "plates" or "plates." Illustration editing on figures should be of sufficient size and clarity to permit reduction to standard page size; ordinarily they should be no more than twice the size of unaltered reduction and cannot exceed 18 cm x 23 cm in size for the finished product. Type written lettering on figures is unacceptable. Photographs must be printed on glossy paper. Fossils or other specimens should be illuminated from the upper left. Authors are requested to make the backgrounds of figures which have higher priority. Sharp focus and high contrast are essential for good reproduction. To facilitate review and to avoid damage to illustrations, authors are instructed to submit two extra copies of each illustration, preferably at publication scale. These copies may be rough, but should provide all information necessary for an adequate review. Notes identifying the author and figure number must be made on the back of each illustration. Also, clearly indicate on each illustration which end should be "up" on the printed page. Tables should be kept to a minimum and typed on separate sheets in a camera-ready format (typed on clean white paper using a carbon rib- bon set in proper proportion for reduction to constraints of the printed page.) The entire table captions should be capitalized. Indicate on the manuscript where figures and tables should be inserted in the text. Do not run tables within text. Be sure to include the captions in the proper format on the camera-ready table.

A cover illustration will be printed for each issue. This may be an illustration pertaining to an article in the issue or one of general scientific interest. The editors invite submission of such illustrations and accompanying captions for possible use.

Procedure for submission. All manuscripts should be submitted to the Editors, Contributions to Geology, Department of Geology, P. O. Box 3006, University Station, Laramie, Wyoming 82071. Evaluation begins with a critical reading by the editors. One or more referees also check the paper for scientific content, originality, and clarity of presentation. It is requested that the author provide the name, title, and complete mailing address (at least one individual deemed qualified to review the manuscript. Such persons, in addition to those selected by the editors, may be asked to evaluate the paper. Judgments as to the acceptability of the manuscript and suggestions for enhancing it are sent to the author at the time the paper is returned. It may be requested to rework portions of the paper considering recommendations by the referees. The paper is then resubmitted and may be re-evaluated before final acceptance. The review period ranges from two weeks to two or more months. Authors should send one copy of the manuscript and illustrations as we cannot be responsible for material lost in the mails.

Proof: The galley proof and manuscript will be sent to the author, who should carefully read the proof sheet for errors and omissions in text, tables, illustrations, legends, and bibliographical references. The author should mark corrections on the galley proofs (readers' marks can be found in Webster's Dictionary) and promptly return both galley and manuscript to the editors. Manuscripts and original illustrations will be returned to the author. Printing charges accruing from excessive additions to, or changes in the proofs must be assured by the author. Page proofs will ordinarily not be provided.

Reprint orders: Fifty reprints are furnished free of charge. Authors will receive instructions pertaining to the order of additional copies.
Magnetostatigraphy of the early Oligocene Pipestone Springs locality, Jefferson County, Montana

DONALD R. PROTHERO
Department of Geology, Knox College, Galesburg, Illinois 61401

ABSTRACT
A clastic early Oligocene (Chadronian) mammalian locality, the Pipestone Springs local fauna of Jefferson County, Montana, was paleomagnetically sampled. 24 sites, spanning 43 m of section, were treated by thermal demagnetization. The lower 25 m showed a predominantly normal polarity; the upper portion of the section showed reversed polarity. Factual correlations and magnetostatigraphic work on other Chadronian sections suggest that the Pipestone Springs sequence correlates with Chron 13 and Chron 12r of the magnetic polarity timescale, or approximately 35 to 36 mybp.

INTRODUCTION
The early Oligocene Pipestone Springs local fauna (f.l.) is considered one of the most important North American Oligocene mammal localities outside the High Plains. Despite the limited outcrop, this locality provides a diverse fauna (especially of small mammals) that allows comparison of montane basin Early Oligocene faunas with the High Plains Chadronian faunas. Many of the taxa in this fauna are unique to Pipestone Springs. Since it was first discovered by Earl Douglass in 1899, Pipestone Springs has been extremely productive, and has generated a large literature, which was reviewed by Tabrum and Fields (1980). The geology of Pipestone Springs and other nearby Oligocene localities in the Jefferson River Valley was described by Kuenzi and Fields (1971). Tabrum and Fields (1980) have revised and updated the faunal list. There are now 55 species of mammals reported from the Pipestone Springs f.l.

PALEOMAGNETIC STRATIGRAPHY
The main fossiliferous exposures are part of the Climbing Arrow Member of the Rentova Formation (Kuenzi and Fields, 1971). They are located in the NW 1/4, NW 1/4 SW 1/4, sec 29, T.2N R.5W, Dohone Lake 7-1-minute quadrangle, Jefferson Co., Montana (Fig. 1). The Climbing Arrow Member at this locality consists of about 60 m of volcanioclastic and metamictite pumiceous mudstones and immature vitric siltstone. The outcrops are fresh and well-exposed, and soft enough to collect with simple hand tools. The magnetostatigraphic section was begun at the first good exposures above the unconformable contact with the underlying Cretaceous Boulder Batholith. The section trended northeasterly (down-dip) along the ridge indicated by the 4760-foot contour (Fig. 1) from the NW 1/4, NW 1/4 SW 1/4 of section 29, to the SE 1/4 SW 1/4, NW 1/4 of the same section (chosen as localities MV 5902, 5911, and 5901 in Kuenzi and Fields, 1971, Fig. 3). Due to the local strike and dip of N50W, 25N, section was measured with a Brunton transit using the Hewett method. Samples were taken every 1.3 meters, resulting in 24 levels, or sample sites. Three-oriented samples were taken at each site, using simple hand tools. In the laboratory, the samples were trimmed with a tungsten carbide-tipped band saw.

Figure 1. Location map (modified from Kuenzi and Fields, 1971, and the Dohone Lake 7-1-minute quadrangle) showing route of magnetostatigraphic section in section 29, T.2N, R.5W. Abbreviations: kb = Cretaceous Boulder Batholith; K = Cretaceous volcanics; TQ = Tertiary and Quaternary valley deposits (including the Oligocene Rentova Formation).
Samples were measured on a CTF Systems, Inc., cryogenic magnetometer at the South Dakota School of Mines and Technology. Mean NRM (natural remanent magnetization) intensity was 6.47×10^5 Gauss. Since many White River Oligocene rocks of similar lithology have proven difficult to demagnetize with alternating field treatment due to chemical overprinting from poeberite (Prothero, in review), all samples were thermally demagnetized. Progressive thermal demagnetization showed a rapid decrease in intensity at higher cleaning temperatures. By 500°C, the mean intensity had dropped to 8.16×10^5 Gauss. At 600°C (above the Curie point of magnetite), the intensity was much less than 5% of NRM, indicating that the primary carrier of the remanence is detrital magnetite. Most samples showed a single characteristic component of normal polarity when analyzed on a Zijderveld plot (Fig. 2). A few samples showed clear reversed directions at demagnetization temperatures of 150-300°C. All samples which had not given stable, clustered directions at 300°C were demagnetized again at 500°C to see if their directions improved. Sample directions were then averaged for each site, and rotated to correct for strike and dip. Standard site statistics (Fisher, 1953; Irving, 1964) were then calculated.

Five of the 24 sites were significantly separated from a random distribution at the 95% confidence level. These are Class I sites of Opdyke and others (1977), and are indicated by a solid circle in Figure 3. In four sites, one sample was lost during preparation, but the other two samples gave clear concordance of directions. These are Class II sites of Opdyke and others (1977), indicated by the open square in Figure 3. Class III sites of Opdyke and others (1977) have two samples which are concordant, but the third is divergent. These are shown by open circles in Figure 3. One site was considered indeterminate (shown by an "x" in Fig. 3). VGP (virtual geomagnetic pole) latitudes were calculated for each site and plotted.

Figure 2. Vector demagnetization (Zijderveld) plot of normal samples. Each step is demagnetization temperature in degrees centigrade.

Figure 3. Magnetic polarity stratigraphy of the Piocheh Spring section. Positive virtual geomagnetic pole (VGP) latitudes are normal; negative VGP latitudes are reversed. Site classification (after Opdyke et al., 1977) is as follows: solid circle—Class I (significant); open square—Class II (sample less significant); open circle—Class III (divergent sample, not significant); "x"—indeterminate polarity. Only polarities zones established by two or more sequential sites of similar polarities are connected by the solid line.

Contributions to Geology, University of Wyoming, 27, no. 1, p. 33-36, 4 figs., December, 1984.
in Figure 3. The polarity pattern thus produced shows that the lowest well-exposed sampling level is of reversed polarity, but there are about 20 m of poorly exposed Oligocene rocks below this level. Strata 25 m thick with a predominantly normal polarity occur above this basal site. In the middle of this zone, one site, near the "lower white layer," is of reversed polarity. The upper 15 m of section is of reversed polarity, except for two sites near the top which appear to be of normal polarity.

CORRELATION

The polarity pattern at Pipestone Springs is not diagnostic by itself. Mammalian biostratigraphy, however, makes a correlation with the polarity timescale possible. Clark and Bierbower (in Clark, Bierbower, and Kutzke, 1967, p. 56-59) correlated the Pipestone Springs I.f. with the upper part of the Chadron Formation (the "Peeble Peak" Member) in the Big Badlands of South Dakota. Entry (1973, p. 34-41) thoroughly reviewed the arguments of Clark and Bierbower and showed that the Pipestone Springs I.f. was not late Chadronian, but as old as middle Chadronian in age. Entry, Bjork, and Russell (in press) correlated Pipestone Springs with the interval between Ash B and Ash F at Flagstaff Rim, Natrona County, Wyoming. This was based on strong similarities of the entire fauna. In particular, the large species of *Leptotomys, L. mammifer* (*Leptotomys* species "C" of Entry, 1973) was shown to be restricted to this interval at Flagstaff Rim. It also occurs abundantly at Pipestone Springs. Thus, the biostratigraphic evidence places the age of the Pipestone Springs I.f. between the dates of 34.6 (Ash F) and 36.1 (Ash B) at Flagstaff Rim (Fig. 4).

In the Chadronian, the polarity timescale shows only two short episodes of normal polarity within one of the longest episodes of reversed polarity in the Tertiary. The Pipestone Springs normal magnetostriatic could be correlated with either of these two normal magnetostriatic chron 12 (32.5-32.9 mybp, according to Berggren, Kent, and Flynn, 1984) or Chron 13 (35.3-35.9 mybp). As is

Figure 4. Correlation of the Pipestone Spring's magnetostratigraphy with other Oligocene magnetostriatic units (Peterson, in review) and with the polarity timescale of Berggren, Kent and Flynn (1984). Observations: NALMA = North American land mammalian "age"; ARK = Arkansas; DUCHONE = Duchonan; MPTS = magnetic polarity timescale; BR = Black River; MMU = Mitchell-Montevideo units (dates on both shown by arrows); U. = local fauna; PBM = Persistent White River fauna; RFA = Rocky Ford Ash. Thickness of magnetostriatic units is based on geochronologic position of radiometrically-dated ashes.

Contributions to Geology, University of Wyoming, v. 23, no. 1, p. 33-56, 4 figs., December, 1984
clear from Figure 4, correlation with Chron 13 is far more reasonable since:
1) it accords with the biostratigraphic evidence which places the Pipestone Springs local fauna between Ashes B and F at Flagstaff Rim. Chron 13 is recognized from about 11 m below Ash B to 10 m above Ash B at Flagstaff Rim (Prothero, in review; see Fig. 4).

2) correlation of the Pipestone Springs magnetostratigraphy with Chron 12 (the only other Chadronian normal magnetozone) would grossly conflict with the biostratigraphic evidence. In addition, the Pipestone Springs magnetostratigraphy shows some tentative evidence of a short reversed excursion within the long normal magnetozone. This is observed in Chron 13, but not in Chron 12 (Berggren and others, 1984).

Thus, the combined biostratigraphic and magnetostratigraphic evidence suggests that the Pipestone Springs sequence ranges from 35 to 36 mybp, so that the Pipestone Springs I.F. is of earliest Oligocene (early medial Chadronian) age.

ACKNOWLEDGMENTS
I thank Rob Lunder and Annie Walton for assistance in the field and laboratory, and W. R. Roggenhen for access to the paleomagnetics lab at the South Dakota School of Mines, R. W. Fields, D. Garcia, and P. Shive have provided helpful criticism and comments. Acknowledgment is made to the Donors of the Petroleum Research Fund, administered by the American Chemical Society, for partial support of this research.

REFERENCES CITED

Prothero, D. R., in review, Chadronian (early Oligocene) magnetostratigraphy of eastern Wyoming: implications for the age of the Eocene-Oligocene boundary: Journal of Geology.

MANUSCRIPT RECEIVED JULY 5, 1984
REVISED MANUSCRIPT RECEIVED SEPTEMBER 24, 1984
MANUSCRIPT ACCEPTED OCTOBER 4, 1984

Contributions to Geology, University of Wyoming, v. 23, no. 1, p. 33-36, 4 figs., December, 1984
Contributions to Geology
The University of Wyoming
Volume 23, Number 1
Fall, 1984

CONTENTS

Donald W. Boyd and Norman D. Newell

9 A three-dimensional map of a paleontological quarry

William L. Aber

15 The northern termination of the Crawford thrust, western Wyoming

James P. Fears and John H. Spang

33 Magnetostratigraphy of the early Oligocene Pipestone Springs locality, Jefferson County, Montana

Donald R. Prothro

37 Residual strain measurements in selected materials from the Black Hills, South Dakota

Jan M. White

45 Book review

Cover Illustration:
Geologic map of part of the Wyoming thrust belt (see paper by Evans and Spang).

SUBSCRIPTION RATE $10.00 per year. Special student rate $5.00 per year in the U.S. when application is accompanied by certification of student standing by faculty member. Individual issues $1.00 each; student rate $3.50.

SUBSCRIPTIONS and related matters may be addressed to Circulation Dept., Contributions to Geology, P. O. Box 3086, University Station, Laramie, WY 82071-3086, U.S.A.

POTENTIAL CONTRIBUTORS should consult inside front cover.