ABSTRACT

The Santiago Formation is a middle Eocene marine and non-marine molluscan and sandstone which occurs widely in Orange County and northwestern San Diego County, California. Magnetic sampling was undertaken in five key sections of the formation. The samples yielded a stable remanence held in both magnetic and hematite which passed a reversal test. The type Santiago Formation east of Irvine Park in the Santa Ana Mountains, Orange County, is earliest middle Eocene and correlates with Chron C21r (46.2-47.8 Ma). The referred “Santiago Formation” in northwestern San Diego County is younger, ranging from Chron C20r (45.46-46 Ma) to Chron C18r (40.41 Ma). This age discrepancy, along with the great differences in lithology and thickness, suggests that the San Diego County outcrops might not truly be referable to the Santiago Formation.

INTRODUCTION

Throughout northwestern San Diego County are isolated outcrops of a fossiliferous siltstone and sandstone known as the Santiago Formation. This unit is composed of complexly interfingering marine and non-marine facies and yields benthic foraminifera, molluscan and fossil mammal. In most cases, these isolated outcrops expose no more than a few meters to tens of meters of section, so no section spans the entire thickness of the formation. Due to much recent road building and the rapid spread of housing developments in northern San Diego County, extensive recent excavations have been made through this unit, yielding many new fossiliferous and better sections (Walsch, 1991, 1996; Rasmussen et al., 1995). These excavations, combined with the biostratigraphy of the recently described fossils, and the refined chronology of the Eocene strata of southern San Diego County (Walsch et al., 1996), allow us to obtain magnetic samples of the formation and correlate these short, isolated sections to the magnetic polarity time scale.

The Santiago Formation was first described by Dickerson (1914) as the “Tejon Formation” based on mollusc-bearing outcrops in the northern Santa Ana Mountains, Orange County (Fig.). Dickerson (1914) used the term “Tejon” in the biostratigraphic rather than lithostratigraphic sense, because the Orange County fossils were similar to those from the Tejon Formation in the San Emigdio Mountains, in the northern Transverse Ranges, 160 km to the northwest. Clearly, the Orange County rocks are not referable to the Tejon Formation, which was deposited in an entirely different depositional basin on the opposite side of the San Andreas fault, and has little or no lithologic similarity to the Orange County rocks. English (1926) also mapped a number of additional outcrops of the “Tejon Formation” between Santiago Creek and the Santa Ana River. Woodring and Popenoe (1945) ended the confusion between lithologic and faunal terms, and proposed the name “Santiago Formation” to replace the older term “Tejon.” They designated a type section about 1 km northeast of Irvine Park in the Santa Ana Mountains. Schoellhamer et al. (1981) described the Santiago Formation in much greater detail.

In Orange County, the Santiago Formation is confined to three small areas: along the southeast side of the Santa Ana River; from the Santa Ana River southeast to Irvine Park; and type section from Santiago Creek to east of Irvine Park (Schoellhamer et al., 1981). Most of these outcrops are now inaccessible and/or poorly exposed, and yield few or no fossils, so they are unsuitable for paleomagnetic sampling. The base of the Santiago Formation consists of a conglomerate, overlain by gray-tan micaceous sandstones and fossiliferous sandstone interbedded with a few siltstones. The unit has numerous calcite-cemented conglomerates, 5 cm to 1 m in diameter, which commonly contain either marine molluscs or plant remains. Silicified wood is common in the stratigraphically higher, non-marine part of the section. In Orange County, the Santiago Formation unconformably overlies the upper Paleocene Silverado Formation and is unconformably overlain by the upper Oligocene-lower
Figure 1. Index map showing location of localities mentioned in text (after Walsh, 1996). JDF = Jeff’s Discovery site; LJR = Laguna Riviera; MD = Mesa Drive; RO = Rancho del Oro.

Miocene Sespe-Vaqueros formations (Schrothammer et al., 1981; Prothro and Lopes, this volume; Prothro and Donohoo, this volume). Schrothammer et al. (1981) reported a maximum thickness of 320 m of Santiago Formation, although most outcrops are much thinner. However, when sampling was conducted on the type section in 1998, we found that only a few meters of the basal sandstones of the type section are still continuously exposed.

In northern San Diego County, the outcrops referred to the Santiago Formation also contain both marine and non-marine fossils, although there are many lithologic differences with the type exposures in Orange County. The geology of these outcrops was described by Wilson (1972), who divided the formation into three members, informally labeled members A, B, and C. A maximum of only 30 m of member A and about 50 m of member B can be measured in any one place, although they may be much thicker. A disconformity separates members B and C, and the maximum measured thickness of member C is only 50 m. Even allowing for the possibility that the base is thicker at the subsurface, it does appear that the rocks referred to the Santiago Formation in San Diego County are much thinner than the type Santiago Formation in Orange County. In addition, differences between the type Santiago Formation in Orange County and the referred outcrops in San Diego County, while there are other differences that might question the nature of these rocks, they were referred to the same formation. The most obvious problem is that they do not appear to overlap in age. At one time, the Santiago Formation was correlated with the middle Eocene, and this low-resolution dating was sufficient. However, recent improvements of dating methods from the 12 million years (37-49 Ma) of the middle Eocene have shown that the age differences were much greater than first suspected. Schrothammer et al. (1981, p. D31) reported that the lower part of the type Santiago Formation in Orange County yields a “Dominant” molluscan fauna, and a late Oligocene bentho foraminiferal fauna, which is the earliest Eocene to earliest middle Eocene in age (47-49 Ma) (Prothro, in press). By contrast, the mammalian fauna of the San Diego County “Santiago Formation” are much younger, from the early Upper Miocene (about 15-46 Ma) to possibly early Oligocene (about 40-41 Ma) (Walsh, 1991; Walsh et al., 1996). Of course, age is not a criterion for definition of a lithostratigraphic unit, but given the large lithologic differences as well, perhaps another name should be given to the San Diego County outcrops referred to the Santiago Formation.

METHODS

Sampling of the San Diego County exposures was conducted in 1989-1991 as part of the excavation of a road cut. The type section of the Santiago Formation was sampled in 1998 as part of the sampling of the underlying type Silverado Formation (Prothro and Lopes, this volume).

Sections were measured with a Jacob’s staff (to the dipping stratigraphic unit) or with a telescoping hand level (to the horizontal strata of San Diego County). For these outcrops, three oriented block samples were collected at each stratigraphic marker.

Once samples were obtained from the field, they were cut into cubes on a band saw with a tungsten-carbide-tipped blade.
Figure 2. Orthogonal demagnetization ("Zijderveld") plots of representative samples. Squares indicate horizontal component; asterisks represent the vertical component. Demagnetization steps indicated by "AF" and "TT" and thermal step in degrees Centigrade. "T" = NRM direction of vertical component. Each division equals 10^−3 emu.

carbide blade, and analyzed on the 2G cryogenic magnetometer at the California Institute of Technology. After measurement of natural remanent magnetization (NRM), pilot samples were demagnetized in alternating fields (AF) of 25, 50, 100, 400 and 800 Gauss to determine the coercivity behavior of the sample, and to remove any remanence held in multidomain grains. Other pilot samples were thermally demagnetized at 100, 200, 300, 400, 500 and 600°C to remove overprints held in iron hydroxides like goethite, and to determine how much magnetization remained above the Curie point of magnetite (580°C). Based on the behavior of these pilot samples, all remaining samples were measured as NRM, then thermally demagnetized at multiple steps of 300, 400 and 500°C to recover the remanence held
in magnetite, while removing any possible overprint held in iron hydroxides like goethite (which dehydrates at 200°C). The samples from the type Santiago Formation were subjected to both AF demagnetization (at 25, 50, and 100 Gauss) followed by thermal demagnetization at 300, 400, 500, and 600°C. The resulting vectors were plotted on orthogonal demagnetization ("Zijderveld") plots, and their statistics calculated using the methods of Fisher (1953).

Several representative samples were also powdered and placed in epistormer tubes. These samples were subjected to inverting IRM (isothermal remanent magnetization) to determine their IRM acquisition behavior. They were also AF demagnetized twice, once after having acquired an IRM produced in a 100 millitesla (mT) peak field, and once after having acquired an ARM (anhysteretic remanently magnetization) in a 100 mT oscillating field. Such data are useful in conducting a modified Lowrie-Fuller test (Plasch et al., 1991).

RESULTS

Magnetic behavior

Orthogonal demagnetization ("Zijderveld") plots of representative samples are shown in Figure 2. In many samples (Fig. 2A, B), there was considerable change in intensity during AF demagnetization, suggesting that the remanence is held in a low-coercivity mineral like magnetite. In these samples, a slight overprint was present, but by AF fields of

400 Gauss, normal overprints had been removed and reversed directions were revealed (Fig. 2A), or the sample may have been normal even at the highest AF step (Fig. 2B). However, thermal demagnetization (Fig. 2C, D) shows that considerable remanence was left even above the Curie point of magnetite (580°C) was exceeded, suggesting that there is also remanence held in hematite as well.

IRM acquisition analysis of selected powdered samples showed that the magnetic minerals reached IRM saturation at 300 mT (millitesla), further supporting the interpretation that the remanence is held in magnetite (Fig. 3). The IRM was more resistant to AF demagnetization than the ARM, suggesting that at least some of the remanence is held in multidomain grains (Fig. 3).

Fisher statistics for each of the localities described below were given in Table 1. On a stereonet, the mean for all normal sites (Table 2) is antipodal to the mean for all reversed sites (Fig. 4). This is a positive reversal test, suggesting that overprinting has been removed and the remanence is primary.
Figure 5. Correlation of the various Santiago sections with the magnetic stratigraphy of the southern San Diego County Eocene rocks (after Walsh et al., 1996) and Sespe Formation (after Prothero et al., 1996), and with the time scale of Berggren et al. (1995). Correlation of Pacific Coast molluscan and benthic foraminiferal zones after Prothero (in press).

Magnetic stratigraphy

Type Santiago Formation (Ulatisian/ Domengine Stage), Orange County—As discussed above, only limited outcrops still remain of Woodring and Popeneo’s (1945) type section of the Santiago Formation east of Irvine Lake and Irvine Park in the Santa Ana Mountains. Samples were taken of the sandstone just above the basal conglomerate, but not enough continuous vertical exposure of the section remained to justify more than one site in the type section. All three samples from the type section showed a stable normal polarity (Table 1). Based on the overlapping ranges of late Ulatisian benthic foraminifers and Domengine mollusks (Fig. 5), this normal magnetozone best correlates with Chron C21n (46.2-47.8 Ma), according to the time scale of Berggren et al., 1995). The Ulatisian benthic foraminiferal stage ranges from the early Eocene to the earliest middle Eocene, with its youngest fossils known from Chron C21n (Prothero, in press). The molluscan “Domengine Stage” ranges from Chron C22r to Chron C21n (Prothero, in press), so only in
Chrom C21n do both Domigene molluscs and Utaelium, benthiic foraminifera occur together.

Mesa Drive section (early and late Uintan). San Diego County—Walsh (1991; 1996, fig. 3) described a section of about 18 m of Member B of the "Santiago Formation," which contains Turritella wosassana, Miliolites packi, Glyptocrinus sp., oysters, and other marine molluscs in the lower part of the section, and the early Uintan Mesa Drive local fauna in the upper part of the section. Overlying this section is a disconformity, in turn overlain by a few meters of coarse arkosic of member C, which contains a late Uintan or early Duchesnean fauna in nearby outcrops. Six sites spanning the 18 m of member B (Fig. 6) were taken from a parallel section along Avenida de la Plata (formerly Barricade Road at the tip of sampling) and analyzed; all were reversed in polarity (Table 1). A single site from the late Uintan, or early Duchesnean arkosic of member C was normal in polarity.

Walsh (1991, 1996) considered the early Uintan fossils of member B to be correlative with the early Uintan fossils of the Friars Formation in southwestern San Diego County. Walsh et al. (1996) concluded that the Friars Formation correlates mostly with early Chron C20n (43.8-46.2 Ma). Thus, the reversed strata of member B at Mesa Drive probably also correlate with early Chron C20n.

The late Uintan strata from member C at Mesa Drive were correlated with late Uintan faunas from the Mission Valley Formation by Walsh (1991, 1996). Walsh et al. (1996) suggested that the latter unit is probably correlative with Chron C20n (42.5-43.8 Ma) (Fig. 4). Thus, the normally magnetized late Uintan outcrops of member C at Mesa Drive probably also correlate with Chron C20n.

Jeff’s Discovery section (early and late Uintan). San Diego County—Walsh (1991, 1996) described an important fossil locality in Oceanside which has produced a wealth of well preserved late Uintan mammals. The lower part of the section (Walsh, 1996, Fig. 5) consists of 16 m of unfossiliferous sandstones of member B, while the upper part of the section above the disconformity exposes 6 m of
member C, yielding all of the fossils from this site (Fig. 7). Eight sites were taken (Fig. 7, Table 1) and both members B and C at this locality are entirely of reversed polarity.

Although there are no fossils to constrain the age of the lower part of the section, it is most likely correlates with Chron C20r, as did the other member B strata described above. The reversed strata of the upper part of the section probably correlate with Chron C19r (41.3-42.5 Ma), because correlative rocks with similar fossils from the upper Mission Valley Formation in southern San Diego County probably also correlate with this magnetic chron (Walsh et al., 1996). In this case, the unconformity between members B and C apparently represents the time of deposition of the intervening Chron C20r.

**San Diego County—Walsh (1991, 1996; Rasmussen et al., 1995) described a series of late Uintan fossil localities from the lower part of member C in the Rancho del Oro II and III housing development in Oceanside. The stratigraphic section at this locality (Fig. 8) is very similar to that of the Mesa Drive area (Fig. 6), complete with the "Oyster Marker Bed." Samples were taken by T. Dernère and B.O. Riney in 1988, before the development was completed and the outcrops paved over.

As in the Mesa Drive and Jeff's Discovery sections, member B outcrops at Rancho del Oro are entirely reversed in polarity, and probably correlate with Chron C20r. As in the Jeff's Discovery section, member C outcrops (which yield the Rancho del Oro local fauna) are reversed in polarity, and probably also correlate with Chron C19r. Thus, the overall magnetostatigraphy is very similar to that of Jeff's Discovery site (Fig. 5).

**Chester Avenue/Laguna Riviera (late Uintan-7Duschenean), San Diego County—The Laguna Riviera local fauna (Golz, 1976; Golz and Lillegraven, 1977; Walsh, 1996) yields a crucial fauna that includes many important taxa, including the early camel *Poebrodon californicus*. The original outcrops of the Laguna Riviera and nearby Chester Avenue localities are now covered and inaccessible, but a section along El Camillo Real parallel to the original Chester Avenue section of Golz (1976) was sampled in 1991. This section spanned almost 35 m of strata of member C of the "Santiago" Formation, and all test sites were reversed in polarity (Fig. 9, Table 1).

Golz (1976) and Golz and Lillegraven (1977) originally thought that the Laguna Riviera and Chester Avenue local faunas were late Uintan in age. However, Walsh (1996, p. 92) suggested that the assemblage of mammals is more like the early Duschesnean Pearson Ranch local fauna of the Sespe Formation in Simi Valley, Ventura County, California. Prothero et al. (1996) showed that the
Pearson Ranch local fauna is correlative with normal Chron C18n (38.5-40.2 Ma), which is inconsistent with the reversed polarity of the San Diego County rocks. However, in the Simi Valley section, strata representing reversed Chron C18r (40.2-41.0 Ma) yield the transitional late Uintan-early Duchesnean Strathem local fauna (Kelly, 1990; Prothero et al., 1996), which is very similar to the transitional Uintan-Duchesnean Laguna Riviera local fauna (Wajib, 1996). Thus, the most reasonable correlation of this section is with Chron C18r, since the next reversed magnetic chron (Chron C17r) correlates with middle-late Duchesnean faunas (Prothero and Emery, 1996).

DISCUSSION

Correlation of all the sections discussed in this paper is shown in Figure 5. As is apparent from this figure, the isolated outcrops referred to the Santiago Formation in two different counties apparently span most of the middle Eocene (from as young as 40.2 Ma to as old as 47.8 Ma). However, each section is very short and bounded by unconformities and poor exposure, so they are a very discontinuous and incomplete record of this 6 to 7 million year interval. In addition, there is no apparent age overlap between the youngest strata of the type Santiago Formation in Orange County, and the oldest sampled strata referred to the Santiago Formation in San Diego County. This, along with the lithologic, facies, and thickness differences between the two areas, raises the question (discussed above) whether the San Diego County outcrops should really be referred to the Santiago Formation, or given a new formational name. However, such a decision is beyond the scope of the present paper.

CONCLUSIONS

Based on biostratigraphy and magnetic stratigraphy, the rocks and fossils referred to the Santiago Formation in Orange and San Diego counties discontinuously span much of the middle Eocene. The type
section of the Santiago Formation in the Santa Ana Mountains in Orange County correlate with Chron C21n (46.2-47.8 Ma). The exposures of Member B of the referred “Santiago” Formation in northern San Diego County (at Mesa Drive, Rancho del Oro, and Jeff’s Discovery Site) correlate with early Chron C20r (43.8-46.2 Ma). Late Uintian strata of Member C of the “Santiago” Formation at Mesa Drive are correlated with Chron C19n, while those from Jeff’s Discovery site and Rancho del Oro are correlated with Chron C19r (41.5-42.5 Ma). Late Uintan–Duchesnean rocks and fossils from the Laguna Riviera/Chestnut Avenue localities are probably correlated with Chron C18r (40.2-41.0 Ma). Thus, the rocks referred to the Santiago Formation in these two counties discontinuously span the interval from 40.2-47.8 Ma, or most of the middle Eocene.

ACKNOWLEDGMENTS

I thank S. Walsh, T. Deméré, and B. Riney for help with the local stratigraphy and for collecting samples. I thank L. Donohoo, J. Erskine, R. Lopez, D. Lundquist, R. Vacca, K. Whittlesey, and E. Wilson for all their help with collecting samples in 1989-1991, and in 1998. I thank CALTRANS for access to the Jeff’s Discovery site. I thank S. Conkling and L. Sample of LSA Associates for their help with access to Irvine Corporation land. I thank J. Kirschvink for access to the Caltech paleomagnetics laboratory. R. Squires and S. Walsh provided helpful reviews of this manuscript. This research was supported by NSF grants EAR87-08221, EAR97-06046 and EAR98-05071, and by grants from the Donors of the Petroleum Research Fund, administered by the American Chemical Society.

REFERENCES

Golz, D.J., and Lillegren, J.A., 1977, Summary of known occurrences of terrestrial Eocene vertebrates from Eocene strata of southern California:
Contributions to Geology, University of
Kelly, T.S., 1990. Biostratigraphy of Uintan and
Duchesnean land mammal assemblages from the
middle member of the Sespe Formation, Simi
Valley, California: Contributions to Science of
the Natural History Museum of Los Angeles
County, v. 419, p. 1-42.
Opylke, N. D., Lindsay, E.H., Johnson, N.M., and
Downs, T., 1977. The paleomagnetism and mag-
netic polarity stratigraphy of the mammal-bearing
section of Anza-Borrego State Park,
California: Quaternary Research, v. 7, p. 316-
329.
Prothero, D.R., in press, Chronostratigraphy of the
Pacific Coast marine Eocene-Oligocene transit-
ion, in Prothero, D.R., Ivany, L.C., and Neshat,
E. (eds.), From Greenhouse to Icehouse: The
Marine Eocene-Oligocene Transition: New York,
Columbia University Press (in press)
Prothero, D.R., and Emry, R.J., 1996, Summary, in
Prothero, D.R., and Emry, R.J., eds., The
Terrestrial Eocene-Oligocene Transition in North
America: Cambridge, Cambridge University
Press, p. 646-664.
Prothero, D.R., Howard, J.L., and Doolittle, T.H.H.,
1996, Stratigraphy and paleomagnetism of the
upper middle Eocene to lower Miocene (Uintan
to Akikreean) Sespe Formation, Ventura County,
California, in Prothero, D.R., and Emry, R.J.,
eds., The Terrestrial Eocene-Oligocene
Transition in North America: Cambridge,
Cambridge University Press, p. 171-188.
Rasmussen, D.T., Shekelle, M., Walsh, S.L., and
Riney, B.O., 1995, The dentition of Dysodeon,
and comments on the use of the anterior teeth in
primate systematics: Journal of Human
Schollehammer, J.E., Vedder, J.O., Yerkes, R.F., and
Kinney, D.M., 1981, Geology of the northern
Santa Ana Mountains, California: U.S.
Geological Survey Professional Paper, v. 420-D.
Walsh, S.L., 1991, Eocene mammal faunas of San
Diego County, in Abbott, P.L., and J.A. May
(eds.), Eocene Geologic History of the San
Diego Region: Pacific Section SEPM, v. 68, p.
149-159
Walsh, S.L., 1996, Middle Eocene mammal faunas of
San Diego County, California, in Prothero,
D.R., and Emry, R.J., eds., The Terrestrial
Eocene-Oligocene Transition in North America:
Cambridge, Cambridge University Press, p. 73-
114.
Walsh, S.L., Prothero, D.R., and Lundquist, D.,
1996, Stratigraphy and paleomagnetic correla-
tion of middle Eocene Friars Formation and
Poway Group in southwestern San Diego
County, California, in Prothero, D.R., and Emry,
R.J., eds., The Terrestrial Eocene-Oligocene
Transition in North America: Cambridge,
Cambridge University Press, p. 105-139.
Wilson, K.L., 1972, Eocene and related geology of a
portion of the San Luis Rey and Ecninitas quad-
ranges, San Diego County, California: Unpubl.
M.Sc. Thesis, University of California, Rivi-
erside.
Woodring, W.P. and Poponen, W.P., 1945, Paleocene
and Eocene stratigraphy of northwestern Santa
Ana Mountains, Orange County, California: U.S.
Geological Survey Oil and Gas Investigations
Preliminary Chart 12.

116
<table>
<thead>
<tr>
<th>Site, Type, or Location</th>
<th>N</th>
<th>D</th>
<th>I</th>
<th>k</th>
<th>o65</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laguna Riviera/Chestnut Avenue</td>
<td>31</td>
<td>247.8</td>
<td>-36.7</td>
<td>4.8</td>
<td>63.7</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>157.0</td>
<td>-17.1</td>
<td>136.3</td>
<td>10.6</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>154.8</td>
<td>-55.3</td>
<td>34.8</td>
<td>21.2</td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>234.7</td>
<td>-49.8</td>
<td>2.0</td>
<td>139.1</td>
</tr>
<tr>
<td>Mesa Drive</td>
<td>29</td>
<td>175.4</td>
<td>-47.5</td>
<td>5.5</td>
<td>58.9</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>238.6</td>
<td>-63.8</td>
<td>11.4</td>
<td>82.9</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>182.4</td>
<td>-37.1</td>
<td>21.2</td>
<td>27.5</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>212.6</td>
<td>-55.9</td>
<td>10.5</td>
<td>40.1</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>158.5</td>
<td>-40.8</td>
<td>427.7</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>169.2</td>
<td>-28.4</td>
<td>25.9</td>
<td>24.8</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>197.0</td>
<td>-37.2</td>
<td>24.0</td>
<td>25.7</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>38.6</td>
<td>-45.9</td>
<td>37.9</td>
<td>41.7</td>
</tr>
<tr>
<td>Jeff's Discovery Site</td>
<td>37</td>
<td>197.4</td>
<td>-47.2</td>
<td>3.5</td>
<td>79.2</td>
</tr>
<tr>
<td></td>
<td>38</td>
<td>173.4</td>
<td>-35.7</td>
<td>3.3</td>
<td>180.0</td>
</tr>
<tr>
<td></td>
<td>39</td>
<td>193.8</td>
<td>-50.7</td>
<td>2.1</td>
<td>124.3</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>173.1</td>
<td>-51.1</td>
<td>9.9</td>
<td>41.5</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>134.8</td>
<td>-46.1</td>
<td>3.8</td>
<td>74.9</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>192.8</td>
<td>-55.5</td>
<td>2.6</td>
<td>102.4</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>170.6</td>
<td>-73.2</td>
<td>2.7</td>
<td>99.3</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>160.8</td>
<td>-50.3</td>
<td>6.0</td>
<td>55.5</td>
</tr>
<tr>
<td>Type Santiago (Irvine Lake)</td>
<td>11</td>
<td>15.2</td>
<td>30.3</td>
<td>36.0</td>
<td>20.9</td>
</tr>
<tr>
<td>Rancho del Oro</td>
<td>1</td>
<td>3</td>
<td>223.8</td>
<td>-34.3</td>
<td>23.5</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3</td>
<td>185.7</td>
<td>-65.4</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>168.7</td>
<td>-42.9</td>
<td>11.2</td>
<td>38.6</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>186.2</td>
<td>-50.1</td>
<td>5.4</td>
<td>34.9</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>182.5</td>
<td>-44.6</td>
<td>3.6</td>
<td>78.4</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1</td>
<td>173.5</td>
<td>-51.0</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>3</td>
<td>196.9</td>
<td>-45.4</td>
<td>6.6</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>3</td>
<td>125.8</td>
<td>-36.8</td>
<td>6.6</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>2</td>
<td>150.9</td>
<td>-17.9</td>
<td>13.0</td>
</tr>
</tbody>
</table>

117
TABLE 2—Summary Fisher statistics of sites from the Santiago Formation. N: number of samples per site; D, I: declination, inclination; k, α₀₉₅ precision parameters.

<table>
<thead>
<tr>
<th>Locality</th>
<th>N</th>
<th>D</th>
<th>I</th>
<th>k</th>
<th>α₀₉₅</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laguna Riviera (rev.)</td>
<td>4</td>
<td>197.5</td>
<td>-48.8</td>
<td>4.2</td>
<td>50.7</td>
</tr>
<tr>
<td>Mesa Drive (rev.)</td>
<td>8</td>
<td>184.4</td>
<td>-46.9</td>
<td>17.1</td>
<td>13.8</td>
</tr>
<tr>
<td>Jeff’s Discovery (rev.)</td>
<td>8</td>
<td>174.7</td>
<td>-52.7</td>
<td>23.3</td>
<td>11.7</td>
</tr>
<tr>
<td>Rancho del Oro (rev.)</td>
<td>9</td>
<td>183.9</td>
<td>-42.4</td>
<td>8.1</td>
<td>19.3</td>
</tr>
<tr>
<td>Formational normal mean</td>
<td>5</td>
<td>22.1</td>
<td>37.2</td>
<td>20.5</td>
<td>17.3</td>
</tr>
<tr>
<td>Formational reversed mean</td>
<td>29</td>
<td>183.8</td>
<td>-48.6</td>
<td>11.7</td>
<td>8.2</td>
</tr>
</tbody>
</table>